Geomorphic evidence for post-10 Ma uplift of the western flank of the central Andes 18 300–22 S

نویسندگان

  • Gregory D. Hoke
  • Bryan L. Isacks
  • Teresa E. Jordan
  • Nicolás Blanco
  • Andrew J. Tomlinson
  • Jahandar Ramezani
چکیده

[1] The western Andean mountain front forms the western edge of the central Andean Plateau. Between 18.5 and 22 S latitude, the mountain front has 3000 m of relief over 50 km horizontal distance that has developed in the absence of major local Neogene deformation. Models of the evolution of the plateau, as well as paleoaltimetry estimates, all call for continued large-magnitude uplift of the plateau surface into the late Miocene (i.e., younger than 10 Ma). Longitudinal river profiles from 20 catchments that drain the western Andean mountain front contain several streams with knickpoint-bounded segments that we use to reconstruct the history of post-10 Ma surface uplift of the western flank of the central Andean Plateau. The generation of knickpoints is attributed to tectonic processes and is not a consequence of base level change related to Pacific Ocean capture, eustatic change, or climate change as causes for creating the knickpoint-bounded stream segments observed. Minor valley-filling alluvial gravels intercalated with the 5.4 Ma Carcote ignimbrite suggest uplift related river incision was well under way by 5.4 Ma. The maximum age of river incision is provided by the regionally extensive, approximately 10 Ma El Diablo–Altos de Pica paleosurface. The river profiles reveal that relative surface uplift of at least1 km occurred after 10 Ma. Citation: Hoke, G. D., B. L. Isacks, T. E. Jordan, N. Blanco, A. J. Tomlinson, and J. Ramezani (2007), Geomorphic evidence for post-10 Ma uplift of the western flank of the central Andes 18 300– 22 S, Tectonics, 26, TC5021, doi:10.1029/2006TC002082.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Topographic Evolution of the Sierra Nevada Measured Directly by Inversion of Low-temperature Thermochronology

At present, there are at least two competing ideas for the topographic evolution of the Sierra Nevada. One idea is that the Sierra Nevada was formed as a monocline in the Cretaceous, marking the transition from the Great Valley forearc basin to the west, and a high Nevadaplano plateau to the east, similar to the west flank of the modern Altiplano of the Andes. Both the thermochronologic imprint...

متن کامل

Late Cenozoic uplift of the Eastern Cordillera, Bolivian Andes

This paper analyses Late Cenozoic uplift in the Bolivian Andes, using the morphology of well preserved regional paleosurfaces in the Eastern Cordillera that define three axially draining braided river catchments that formed between ∼12 and ∼9 Ma. Rock uplift since the formation of the paleodrainage systems, which has been quantified using four different methods, is 1705±695 m, with a mean erosi...

متن کامل

Tracing the impact of the Andean uplift on Neotropical plant evolution.

Recent phylogenetic studies have revealed the major role played by the uplift of the Andes in the extraordinary diversification of the Neotropical flora. These studies, however, have typically considered the Andean uplift as a single, time-limited event fostering the evolution of highland elements. This contrasts with geological reconstructions indicating that the uplift occurred in discrete pe...

متن کامل

Steady, balanced rates of uplift and erosion of the Santa Monica Mountains, California

Topographic change in regions of active deformation is a function of rates of uplift and denudation. The rate of topographic development and change of an actively uplifting mountain range, the Santa Monica Mountains, southern California, was assessed using landscape attributes of the present topography, uplift rates and denudation rates. Landscape features were characterized through analysis of...

متن کامل

Numerical modeling of the Cenozoic geomorphic evolution of the southern Sierra Nevada, California

Recent geomorphic studies suggest that significant (∼1.5 km) late Cenozoic surface uplift occurred in the southern Sierra Nevada, a conclusion that is difficult to reconcile with recent stable-isotopic paleoaltimetry studies. Numerical modeling can play an important role in resolving this dispute. In this paper I use two models of bedrock channel erosion, the stream-power model and a sediment-f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007